Основы логики

Логика – наука о законах и формах мышления.

Законы мира, сущность предметов, общее в них мы познаем посредством абстрактного мышления. Основными формами абстрактного мышления являются понятия, суждения и умозаключения.

Высказывание (суждение)– некоторое предложение, которое может быть истинно (верно) или ложно.

Утверждение – суждение, которое требуется доказать или опровергнуть

Рассуждение – цепочка высказываний или утверждений, определенным образом связанных друг с другом.

Умозаключение – логическая операция, в результате которой из одного или нескольких данных суждений получается (выводится) новое суждение.

Логическое выражение – запись или устное утверждение, в которое, наряду с постоянными, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных логическое выражение может принимать одно из двух возможных значений: ИСТИНА (логическая 1) или ЛОЖЬ (логический 0).

Сложное логическое выражение – логическое выражение, составленное из одного или нескольких простых (или сложных) логических выражений, связанных с помощью логических операций.

Логические операции и таблицы истинности.

Логическое умножение – КОНЪЮНКЦИЯ – это новое сложное выражение будет истинным только тогда, когда истинны оба исходных простых выражения. Конъюнкция определяет соединение двух логических выражений с помощью союза. Обозначается: A & B, A /\ B.

kon.JPG

Логическое сложение – ДИЗЪЮНКЦИЯ – это новое сложное выражение будет истинным тогда и только тогда, когда  истинно хотя бы одно из исходных (простых) выражений. Дизъюнкция определяет соединение двух логических выражений с помощью союза ИЛИ. Обозначается: A+B, A \/ B.

diz.JPG

Логическое отрицание: ИНВЕРСИЯ – если исходное выражение истинно, то результат отрицания будет ложным, и наоборот, если исходное выражение ложно, то результат отрицания будет истинным. Данная операция означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО.

inv.JPG

Логическое следование: ИМПЛИКАЦИЯ – связывает два простых логических выражения, из которых первое является условием (А), а второе (В) – следствием из этого условия. Результатом ИМПЛИКАЦИИ является ЛОЖЬ только тогда, когда условие А истинно, а следствие В ложно.Выражается словами ЕСЛИ …, ТО … Обозначается: A→B.

impl.JPG

Логическая равнозначность: ЭКВИВАЛЕНТНОСТЬ – определяет результат сравнения двух простых логических выражений А и В. Результатом ЭКВИВАЛЕНТНОСТИ является новое логическое выражение, которое будет истинным тогда и только тогда, когда оба исходных выражения одновременно истинны или ложны. Обозначается: A↔B, A≡B.

ekv.JPG

Порядок выполнения логических операций в сложном логическом выражении:

1. инверсия;

2. конъюнкция;

3. дизъюнкция;

4. импликация;

5. эквивалентность.

Для изменения указанного порядка выполнения операций используются скобки.

Построение таблиц истинности для сложных выражений:

Количество строк = 2n+ 1 строка для заголовка (n - количество простых высказываний).

Количество столбцов = количество переменных + количество логических операций.

При построении таблицы надо учитывать все возможные сочетания логических значений 0 и 1 исходных выражений. Затем – определить порядок действий и составить таблицу с учетом таблиц истинности основных логических операций.

Пример: составить таблицу истинности для функции pr.JPG.

Решение: В этой функции две переменные, значит в таблице истинности будет 22+1=5 строк и 2+4(операций)=6 столбцов. Построим таблицу истинности.

 tabl.JPG

 
Наверх